-
TypeJournal Article
-
Published in
-
Year2021
-
Author(s)
Li, Luyao and He, Xiaoyi and Keoleian, Gregory A. and Kim, Hyung Chul and De Kleine, Robert and Wallington, Timothy J. and Kemp, Nicholas J. -
URL
-
AccessBehind paywall
-
Search
Google Scholar Google -
ID
1003092
Life Cycle Greenhouse Gas Emissions for Last-Mile Parcel Delivery by Automated Vehicles and Robots
Increased E-commerce and demand for contactless delivery during the COVID-19 pandemic have fueled interest in robotic package delivery. We evaluate life cycle greenhouse gas (GHG) emissions for automated suburban ground delivery systems consisting of a vehicle (last-mile) and a robot (final-50-feet). Small and large cargo vans (125 and 350 cubic feet; V125 and V350) with an internal combustion engine (ICEV) and battery electric (BEV) powertrains were assessed for three delivery scenarios: (i) conventional, human-driven vehicle with human delivery; (ii) partially automated, human-driven vehicle with robot delivery; and (iii) fully automated, connected automated vehicle (CAV) with robot delivery. The robot’s contribution to life cycle GHG emissions is small (2–6%). Compared to the conventional scenario, full automation results in similar GHG emissions for the V350-ICEV but 10% higher for the V125-BEV. Conventional delivery with a V125-BEV provides the lowest GHG emissions, 167 g CO2e/package, while partially automated delivery with a V350-ICEV generates the most at 486 g CO2e/package. Fuel economy and delivery density are key parameters, and electrification of the vehicle and carbon intensity of the electricity have a large impact. CAV power requirements and efficiency benefits largely offset each other, and automation has a moderate impact on life cycle GHG emissions.
Something wrong with this information? Report errors here.