Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda

Artificial intelligence (AI) will transform business practices and industries and has the potential to address major societal problems, including sustainability. Degradation of the natural environment and the climate crisis are exceedingly complex phenomena requiring the most advanced and innovative solutions. Aiming to spur groundbreaking research and practical solutions of AI for environmental sustainability, we argue that AI can support the derivation of culturally appropriate organizational processes and individual practices to reduce the natural resource and energy intensity of human activities. The true value of AI will not be in how it enables society to reduce its energy, water, and land use intensities, but rather, at a higher level, how it facilitates and fosters environmental governance. A comprehensive review of the literature indicates that research regarding AI for sustainability is challenged by (1) overreliance on historical data in machine learning models, (2) uncertain human behavioral responses to AI-based interventions, (3) increased cybersecurity risks, (4) adverse impacts of AI applications, and (5) difficulties in measuring effects of intervention strategies. The review indicates that future studies of AI for sustainability should incorporate (1) multilevel views, (2) systems dynamics approaches, (3) design thinking, (4) psychological and sociological considerations, and (5) economic value considerations to show how AI can deliver immediate solutions without introducing long-term threats to environmental sustainability.

Something wrong with this information? Report errors here.