

DEVELOPMENT OF AN URBAN

MATERIAL FLOW AND STOCK

DATABASE STRUCTURE

Deliverable 4.2

Metabolism of Cities

Version 1.0 (2020-04-01)

WP 4

Dissemination level Public

Deliverable lead Metabolism of Cities (MoC), info@metabolismofcities.org

Authors Paul Hoekman (MoC)

Reviewers Carolin Bellstedt (MoC), Aristide Athanassiadis (MoC)

Abstract

This document provides the background of an urban

metabolism database in use by Metabolism of Cities and

describes the requirements that exist for the CityLoops project.

This makes it clear why modifying the existing database

structure is a useful development and necessary to take for

the CityLoops project. More technical descriptions of the

database schema are provided and the core components of

the modified database structure are discussed, including the

scope and extent of the modifications made for CityLoops.

Keywords
Urban metabolism; Stocks and flows; Database structure;

Structured Query Language (SQL)

License

This work is licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). See:

https://creativecommons.org/licenses/by/4.0/

D4.2 - Development of an Urban Material Flow and Stock Database Structure - ii -

This document includes technical specifications and domain-specific language. A solid

understanding of database administration and Structured Query Language (SQL) is required

to understand the technical part of this document.

Contents

Contents __ii

Acronyms and Abbreviations __ iii

Table of Figures ___ iv

Table of Tables __ iv

1. Introduction ___ 1

2. Database Structure__ 3

2.1. Background __ 3

2.2. Requirements for data storage in CityLoops _____________________________ 7

2.3. Principal CityLoops changes to STAFDB ________________________________ 9

2.3.1. Database normalisation and structural clean-up _______________________ 9

2.3.2. Improved implementation of Adjacency Lists ________________________ 10

2.3.3. Process diagrams ___ 15

2.3.4. Independent structure__ 17

2.4. Structural overview ___ 17

3. Going forward ___ 21

Bibliography__ 23

Annex 1 ___ 24

Annex 2 ___ 60

D4.2 - Development of an Urban Material Flow and Stock Database Structure - iii -

Acronyms and Abbreviations

AS-MFA Activity-based Spatial MFA

CTE Common Table Expression

DBMS Database management system

GUMDB Global Urban Metabolism Database

IOA Input-Output Analysis

LCA Life Cycle Assessment

MFA Material Flow Analysis

MTU Micro-territorial Unit

OMAT Online Material Flow Analysis Tool

SCA Sector-wide Circularity Assessment

SQL Structured Query Language

STAFDB Stocks and Flows Database

UCA Urban Circularity Assessment

UMIS Unified Materials Information System

WP Work Package

YSTAFDB Yale Stocks and Flows Database

D4.2 - Development of an Urban Material Flow and Stock Database Structure - iv -

Table of Figures

Figure 1: Relationship of tasks in WP4 and the information and/or function that they provide 1

Figure 2: Screenshots of OMAT, displaying the initial dashboard (bottom), and graphs and

tables generated by the system (top). ... 4

Figure 3: Screenshots of GUMDB, showing a summary of available data (top), and a detailed

list with data available for a specific city (bottom). .. 5

Figure 4: Screenshot of MultipliCity with overview of multiple datasets available within a sector

(source)... 5

Figure 5: Screenshots of MultipliCity, featuring a record of a single dataset and its

visualisations (source) .. 6

Figure 6: Database table overview for processes ... 12

Figure 7: Database table overview for materials ... 13

Figure 8: Database table overview for geocode system for reference spaces 14

Figure 9: Database table overview for geocode for reference spaces 14

Figure 10: Database table overview for referencespace for reference spaces 14

Figure 11: Database table contains the many-to-many relationship between geocode entries

and reference spaces ... 15

Figure 12: Typical supply chain visualised within the REPAiR project (Geldermans et al. 2017)

 .. 15

Figure 13: Material cycle diagram from a research project on the global iron cycle (Wang,

Müller, and Graedel 2007). .. 16

Figure 14: Database table containing metadata about a flow diagram 16

Figure 15: Database table containing the individual blocks of the flow diagram 17

Figure 16: A simplified overview of the key tables within STAFDB, and how they relate to the

data table .. 18

Figure 17: Visual view of the different tables in the STAFDB schema. Annex 1 provides the

underlying SQL code for all the fields and tables. ... 19

Figure 18: Overview of the key tables used for different components of a dataset

(corresponding to the same colours as in Figure 16), illustrated with a material cycle diagram

from a research project on the global iron cycle (Wang, Müller, and Graedel 2007). 20

Table of Tables

Table 1: Comparison between Adjacency relation, Nested Sets, Materialized Path, and Nested

Intervals (Vadim Tropashko 2014) ... 11

Table 2: Two different hierarchical trees to place Apeldoorn .. 13

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 1 -

1. Introduction

CityLoops is an EU Horizon 2020-funded project that brings together seven ambitious

European cities to demonstrate a series of innovative tools and urban planning approaches,

aimed at closing the loops of urban material flows and increasing their regenerative capacity.

This report is part of Work Package (WP) 4: Urban Circularity Assessment. This WP has two

objectives:

▪ To develop and implement a sector-wide material flow and stock accounting method,

designed to help optimise demonstration activities through a detailed analysis of

material flows, stakeholder involvement and valorisation pathways.

▪ To develop and demonstrate a comprehensive city-wide urban circularity assessment

procedure, designed to enable cities to effectively integrate circularity into planning and

decision making.

Figure 1: Relationship of tasks in WP4 and the information and/or function that they provide

This report is a deliverable of Task 4.2: Development of a flow and stock database structure.

Within the associated WP4, there is no final decision yet on the material accounting method

that will be used to undertake (city-wide and sector-wide) circularity assessments (Task 4.3

and 4.4). However, the development of a database structure is intentionally taking place before

this decision is finalised, because the nature of the data collected and used in the following

steps is already known. After completing a literature review on the different urban material flow

and stock accounting methods (see Deliverable 4.1 from Task 4.1), there are already sufficient

insights into the different types of methods that exist and that are relevant for CityLoops. All

these methods use data on resource stocks and flows, and the database structure will need to

cater to this by remaining as flexible and comprehensive as possible. Building a system around

this database structure that allows for uploading, retrieving, and processing data in a way that

is stipulated by the chosen method will take place separately from this task (in Task 4.6), and

at that point it will be necessary to have a full understanding of the chosen method. However,

https://metabolismofcities.org/resources/publications/888

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 2 -

until then, recording of data in a consistent format is key, which is the aim of this task. Finally,

Figure 1 illustrates the relationship of the various tasks within WP4, showing what they provide

to each other.

This document will outline the background of an urban metabolism database in use by

Metabolism of Cities (Section 2.1) and then describe the requirements that exist for the

CityLoops project (Section 2.2). This makes it clear why modifying the existing database

structure is a necessary and useful route to take for the CityLoops project. More technical

descriptions follow in Section 2.3, where the core components of the modified database

structure are discussed. Section 2.4 describes in more detail the scope and extent of the

modifications made for CityLoops. Finally, Chapter 3 summarises the future work to be done

and how this database structure is expected to evolve during and beyond the CityLoops project.

The main output of Task 4.2, however, is not this report itself but instead Annex 1, which

contains an SQL dump with the complete database structure. This report merely describes the

rationale behind this schema and provides insights into the changes that were made. Annex 2

contains a sample spreadsheet format that shows in what format cities may collect and report

data. This illustrates that the data collection and reporting format is a rather simple one, which

will be transformed “behind the scenes” into the more complex data structure that is in place.

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 3 -

2. Database Structure

In this chapter, the database structure - including its background, recent changes, and future

plans - is reviewed.

2.1. Background

For many years, the open source, urban metabolism web platform developed by Metabolism

of Cities (available at https://www.metabolismofcities.org) has been storing and sharing urban

metabolism data in order to better understand the metabolism of urban systems. Over the

years, the way data has been uploaded and used has changed due to a number of iterations

to cater different purposes and users. In this section, the rationale behind these iteration steps

are further detailed.

The first step, initiated in 2014, was an online tool to administer a material flow analysis (MFA),

called OMAT (Online Material Flow Analysis Tool), which allowed users to record and manage

material flow data for their own project(s). The system generates tables, indicators, and charts

based on the entered data, see Figure 2. OMAT can be used for an economy-wide MFA or it

can be used to perform an MFA on a specific sector. It has been used to allow students to

jointly contribute data into the same MFA project (Villalba and Hoekman 2018), and it was one

of the first web-based, open source tools to manage MFA datasets. Amongst similar tools that

existed at that period was the offline software STAN which was an inspiration for OMAT.

https://www.metabolismofcities.org/
http://www.stan2web.net/

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 4 -

Figure 2: Screenshots of OMAT, displaying the initial dashboard (bottom), and graphs and tables generated by the
system (top).

In 2017, the Global Urban Metabolism Database (GUMDB) was set up as an initial experiment

to centralise data points and indicators obtained from/by academic work (Figure 3) (Hoekman

et al. 2019). Both GUMDB and OMAT have export functions that enable users to download

data (either the entire project or a specific part of it) in CSV format.

https://archive.metabolismofcities.org/page/casestudies

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 5 -

Figure 3: Screenshots of GUMDB, showing a summary of available data (top), and a detailed list with data available
for a specific city (bottom).

After running these two

projects for a number of

years, Metabolism of Cities

started working on a system

to capture material stocks

and flow data from a greater

variety of sources and with a

larger degree of

heterogeneity. This project,

dubbed MultipliCity, was set

up to allow for a much more

fine-grained level of data

capturing. MultipliCity

makes it fairly easy for users

to upload data, and it is built

around the idea of

crowdsourcing the

collection of urban stocks

and flow data. Data could be

Figure 4: Screenshot of MultipliCity with overview of multiple datasets
available within a sector (source)

https://archive.metabolismofcities.org/page/casestudies
https://archive.metabolismofcities.org/casestudy/21
https://metabolismofcities.org/cities/cape-town/sectors/water/

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 6 -

recorded on a city-wide scale, but it could also be recorded on a suburb or neighbourhood

level. Data could even be linked to individual infrastructure (e.g. a train station or wastewater

treatment plant). Uploaded datasets are stored in a single database and data can be

aggregated or disaggregated according to user needs. Figure 4 and Figure 5 depict

screenshots of MultipliCity.

Figure 5: Screenshots of MultipliCity, featuring a record of a single dataset and its visualisations (source)

Both OMAT and GUMDB use two different MySQL database schemas, both of which are

specifically made for their associated application. However, MultipliCity was set up with a more

widespread use in mind. This system was built on the Unified Materials Information System

(UMIS). UMIS was developed at Yale University (Myers et al. 2019), and was put to use in a

database subsequently created to store material flows data obtained from decades of material

systems research at Yale. This database, called the Yale Stocks and Flows Database

(YSTAFDB), was one of the first functional databases where theoretical frameworks (like UMIS)

are applied to a real-life scenario. This also meant that a database schema had to be developed

alongside the theoretical framework. Both, the YSTAFDB database schema and the data points

are published as open source works (Myers, Reck, and Graedel 2019).

Other material stocks and flows research groups have also developed databases or worked on

consolidating the often incompatible formats. The industrial ecology data commons project

(Pauliuk et al. 2019) provides a prototype database structure that aims to integrate other

databases developed within a variety of disciplines. Other interesting work includes a database

https://metabolismofcities.org/cities/cape-town/datasets/17/

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 7 -

containing data on material intensity for buildings (Heeren and Fishman 2019), and a general

system structure for socioeconomic metabolism information (Pauliuk, Majeau‐Bettez, and

Müller 2015).

YSTAFDB provided the most suitable starting point for the MultipliCity system. This system

was one of the most applied database structures (rather than being a more theoretical

framework), and the goals were well-aligned with Metabolism of Cities’ data storage goals.

However, from a technical perspective this database structure lacked some features. A

principal shortcoming was the lack of database normalisation which may result in data

redundancy and lack of data integrity (this means that when data is stored in multiple places,

a change effected in one place may lead to a discrepancy if the same data point is not changed

in another place, which becomes more likely if the database is not normalised). The initial

implementation of an adjusted YSTAFDB in MultipliCity, called the Stocks and Flows Database

(STAFDB), primarily consisted of applying database normalisation practices to the existing

structure. It was in this form that it was implemented within the Metabolism of Cities website.

2.2. Requirements for data storage in

CityLoops

Within CityLoops, there will be a multitude of material stocks and flows data that needs to be

stored efficiently, in a central location, and that can be retrieved easily to suit a variety of needs

(e.g. to generate data visualisations, to export to a spreadsheet, or to be used as an input into

a model). For this, a suitable database structure needed to be developed that would be flexible

enough to function for different methods and have some other key features, which will be

elaborated on in this chapter.

When developing a database structure, it was taken into account that a number of different

accounting method families have been identified in the literature review (Deliverable 4.1).

There, the following method families were identified:

▪ Flow analysis methods

▪ Energy assessment methods

▪ Input/output (IO) methods

▪ Footprint methods

▪ Life cycle assessment (LCA) methods

▪ Integrated methods

These different types of methods have different data storage requirements. For all methods,

there are quantities and material flows involved. Flow analysis methods focus on an origin and

destination for materials. Energy assessments look at the upstream energy needs. Input/output

methods unpack the interplay between components (e.g. sectors) within a system. LCA

methods are concerned with the entire lifecycle of a material flow. Integrated methods are

combinations of the aforementioned methods and generally do not have their own unique data

storage requirements, following the ones of the combined methods.

https://metabolismofcities.org/resources/publications/888

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 8 -

From the outset of the CityLoops project, it has been envisioned that there would be a certain

level of integration of material stocks and flows data within the open source data hub already

developed by Metabolism of Cities. The existing database structure and the MultipliCity data

visualisation system already met a number of the requirements of the CityLoops project. In

order to fully cater to the CityLoops needs, a number of adjustments were made to this

database structure. Various of these changes relate to the requirement of allowing data from

different accounting methods to be stored in the same database, as discussed above. Other

changes were focused on improving general shortcomings that were already observed in the

initial roll-out of the system.

The following key features should be part of the database structure to ensure it fully suits the

needs of the CityLoops project:

▪ Multi-method:

Ability to record material stocks and flows data originating from different types of

methodologies (MFA, LCA, IOA, and others where possible) - this is discussed in more

detail below.

▪ Multi-scale:

At a minimum, the system should work for city-wide data and sector-wide data. Since it

will have to be flexible for these two levels, it should be possible to record national,

global, or sub-national (regional) data as well.

▪ Aggregation and disaggregation:

Users should be able to aggregate up (e.g. get the total material flows within a city

based on the flows observed in all suburbs inside the city), and disaggregate (e.g. view

individual data points for all those suburbs when exploring the city’s data). Data should

be recorded on the most fine-grained level (up to a sensible level), and then displayed

as per the user’s preference.

▪ Hierarchical understanding of processes, sectors, materials, and reference

spaces:

All these catalogues contain a certain hierarchical structure. This hierarchical structure

should be maintained at a database level, to allow for aggregation and disaggregation

using these same features. This requirement is more elaborated on in the following

chapter.

▪ Scalability:

Many millions of data points should be stored within the system without it adversely

affecting performance (e.g. slow it down).

▪ Balancing necessary defaults with customisation options:

To ensure users, in principle, use the same classification system for materials,

processes, or reference spaces, there should be default catalogues in place that guide

this - but at the same time users must retain a way to customise certain parts of their

profile to suit their specific needs.

▪ Community adoption:

The structure should be set up in such a way that a wide community of users can benefit

from this system. The more users, the higher the likelihood that this project can continue

to be developed and expanded. Community adoption is increased by a) licensing this

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 9 -

under an open source, permissive license, b) allowing a variety of methods, spatial

scopes, and material scopes to be catered to, and c) encouraging of the development

of tools and visualisations that are separate from CityLoops’ and Metabolism of Cities’

specific needs.

2.3. Principal CityLoops changes to

STAFDB
The following sections explain the principal changes and the reason behind the core features

of this database structure. These changes were crucial to enable STAFDB to be used for the

CityLoops project. Some limitations affected the ability of the database to store crucial

information or to provide flexibility to cater to the different data storage needs expected from

the different cities, while other shortcomings would have had a negative effect in the long-term

expansion and maintenance of the database.

2.3.1. Database normalisation and structural clean-up

While the initial implementation of STAFDB already included a database normalisation effort,

these efforts were not yet finalised. Within STAFDB, the goal is to implement normalisation in

order to reduce data redundancy and improve data integrity. However, this process may come

at a cost in terms of structural complexity and performance. Achieving the sixth normal form

(6NF), which in principle is the highest level of database normalisation, is not necessarily the

goal. Instead, STAFDB aims to achieve the highest practical level of normalisation, weighed

off against database complexity and performance. These trade-offs can be subjective and

some of them will have to be studied and discussed as time goes by.

Another key activity was to critically review the database structure and evaluate the suitability

of every single database field. A number of fields were implemented ad-hoc, especially in the

first few months of bringing the MultipliCity system online, as unexpected user or admin needs

arose. Several fields were furthermore made redundant but never removed. A structural

evaluation and clean-up took place.

Some patterns that were observed in the previous roll-out of STAFDB related to database

normalisation and clean-up include:

▪ Process (origin and destination) recording in the Data table. Every single flow within a

specific time frame for a specific material and from and to a specific reference space

will share the same process origin and destination if they describe the same part of the

overall system flow diagram. In the original setup that meant that there was a high level

of duplication of data. To overcome this, a new table was set up to record the processes

involved in each vertex of the flow diagram. This new structure is elaborated on in more

detail in the Process diagrams (section 2.3.3) section.

▪ Dataset, CSV, and Data interaction was improved. These three tables contain meta

information about the dataset, details of the set of data points uploaded at any one time,

and the actual individual data points, respectively. However, this structure was not

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 10 -

flexible enough to accommodate multiple people feeding data into the dataset, or to

allow for people to edit or remove individual data points. These tables were restructured

to accommodate this.

▪ Logging was improved to keep better track of which user uploads, edits, or deletes

information in any part of the system. Where possible and practical, the original

information is retained to keep a persistent record, and soft deletes are introduced.

▪ The “Topics” were completely removed. This system was superseded by better

integration of economic sectors and the use of ubiquitous tags throughout the system.

▪ The “DatasetType” model was entirely removed. It became redundant after rolling out

the new process diagrams.

▪ MTU (Micro-territorial unit) information was duplicated in the old structure (it had its own

table, separate from the reference spaces). This system was superseded by an

hierarchical geocode table.

▪ Reference spaces included separate fields for “Country”, “City”, and “Parent”, which

was restructured to take out the parental link at reference space level and instead define

this within the geocode system, and to then link to this.

2.3.2. Improved implementation of Adjacency Lists

Hierarchical data structures are commonplace in a stocks and flows database. Some examples

of hierarchical data include:

▪ Processes (e.g. Mining is part of Extraction which is part of Pre-use transformative

processes)

▪ Materials (e.g. Bananas is part of Fruits which is part of Crops which is part of Biomass)

▪ Reference spaces (e.g. Apeldoorn which is part of The Netherlands which is part of

Europe).

There are a number of ways of storing hierarchical data in a database. Each technique comes

with advantages and drawbacks, and it is a matter of weighing these pros and cons and

selecting the technique most suitable for the use case. Some of the properties that should be

evaluated when comparing options include:

▪ Whether standard SQL can be used or proprietary extensions are required

▪ Efficiency of finding descendants

▪ Efficiency of finding ancestors

▪ Ease of finding the children of a node

▪ Ease of finding a node’s parents

▪ Efficiency of aggregate queries

▪ Ease of tree reorganization

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 11 -

The topic of selecting an appropriate technique when recording hierarchical data has been of

interest to programmers for many years. A 9 year old question on Stack Overflow1 on the topic

has attracted over 236 thousand views and 1157 stars to date. The following comparison table

comes from the book SQL Design Patterns (Vadim Tropashko 2014) and compares four

different techniques.

This comparison is not exhaustive and many other techniques could also be considered. For

the STAFDB structure, Adjacency Lists were selected as the way to integrate hierarchical data.

As can be seen in Table 1, where this is listed as “Adjacency relation”, this technique ranks

high on nearly all of the features that were analysed. The caveat is that finding ancestors and

descendants is expensive under standard SQL. However, Common Table Expressions (CTE)

alleviate this problem. CTEs are not supported in all database management systems, but

because PostgreSQL does support this and PostgreSQL are considered the DBMS of choice,

it was decided to implement adjacency lists.

Table 1: Comparison between Adjacency relation, Nested Sets, Materialized Path, and Nested Intervals (Vadim
Tropashko 2014)

ADJACENCY
RELATION (TREE
EDGES;
STANDALONE, OR
COMBINED WITH
THE TREE NODES)

NESTED SETS MATERIALIZED
PATH

NESTED
INTERVALS VIA
MATRIX ENCODING

Have to use

proprietory SQL

extensions for

finding ancestors

and descendants;

although the queries

are efficient

Standard SQL Standard SQL Standard SQL

Finding

descendants is

relatively efficient

(i.e. proportional to

the size of the

subtree)

Finding

descendants is easy

and relatively

efficient (i.e.

proportional to the

size of the subtree)

Finding descendants is

easy and relatively

efficient (i.e.

proportional to the size

of the subtree)

Same as MP: Finding

descendants is easy

and relatively efficient

Finding ancestors is

efficient

Finding ancestors is

easy but inefficient

Finding ancestors is

tricky but efficient

Same as MP: Finding

ancestors is tricky but

efficient

Finding node’s

children is trivial

Finding node’s

children as all the

descendants

restricted to the next

level is inefficient

Finding node’s

children as

descendants on next

level is inefficient

Same as AR: Finding

node’s children is

trivial

1 See: https://stackoverflow.com/q/4048151

https://stackoverflow.com/q/4048151

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 12 -

(e.g. consider root

node)

Finding node’s

parent is trivial

Finding node’s

parent as ancestor

on the previous

level is inefficient

due to inefficiency of

ancestors search

Finding node’s parent

as ancestor on the

previous level is

efficient

Same as AR: Finding

node’s parent is trivial

Aggregate queries

are relatively

efficient (i.e.

proportional to the

size of the subtree)

Aggregate queries

are relatively

efficient (except

counting, which is

super fast)!

Aggregate queries are

relatively efficient (i.e.

proportional to the size

of the subtree)

Aggregate queries are

relatively efficient (i.e.

proportional to the size

of the subtree)

tree reorganization

is very simple

tree reorganization

is hard

tree reorganization is

easy

tree reorganization is

easy (but not as

simple as in AR)

Adjacency lists were already in use in processes and materials, and this implementation is

illustrated in the table overviews in Figure 6 and Figure 7 respectively below. The parent_id

field contains a foreign key to another record within the same table. Furthermore, the usage of

CTE was relatively limited in the initial implementation, and usage has now been rolled out in

all the tables where adjacency lists have been used.

Figure 6: Database table overview for processes

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 13 -

Figure 7: Database table overview for materials

The table with information about reference spaces had to be restructured. This table contains

information of any physical system (a country, city, suburb, facility, etc). However, the hierarchy

of these systems is ambiguous. Take the example of a city. This could be seen as being part

of a province or state, but it could also be part of a larger subnational region. This could then

fit within a country, or there could be a classification based on other boundaries. Table 2

illustrates this with an example.

Table 2: Two different hierarchical trees to place Apeldoorn

Level 1 Europe Western Europe

Level 2 The Netherlands The Netherlands

Level 3 Apeldoorn East Netherlands

Level 4 Gelderland

Level 5 Apeldoorn

As can be seen in Table 2, there are multiple ways to situate Apeldoorn within a hierarchical

structure. Many different standards and systems exist to locate spaces (for example FIPS,

NUTS, and ISO 3166). Rather than dictating a single standard, STAFDB is set up so that it can

accommodate any hierarchical geocoding scheme. This is done by creating a catalogue of

geocoding systems, and then creating adjacency lists for all of the levels that exist within that

catalogue. Finally, reference spaces are linked through a many-to-many relationship with

specific levels within one or multiple geocoding systems. The relevant tables for the reference

spaces are listed in Figure 8 - Figure 11.

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 14 -

Figure 8: Database table overview for geocode system for reference spaces

Figure 9: Database table overview for geocode for reference spaces

Figure 10: Database table overview for referencespace for reference spaces

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 15 -

Figure 11: Database table contains the many-to-many relationship between geocode entries and reference spaces

2.3.3. Process diagrams

Within MultipliCity, the focus has been on storing MFA data, either on a city-wide level or on a

micro-territorial unit level. Data recorded included an origin and destination place, and could be

linked to a process, based on the NACE list. However, it was not possible to build a system

overview. For instance, data could be stored on flows leaving and entering the city, but the

system could not calculate the net addition to stock - all flows were seen as independent blocks

without any correlation between them. The system was not set up to capture LCA or IOA

datasets.

Structural changes were made to enable for flows to be correlated. This is done by allowing

the user to build a system diagram as a first step. This diagram can be envisioned as a flow

diagram, in which any number of blocks are linked to each other, and flows are drawn between

each of these blocks. Such a process diagram is common in LCA and in SFA, where the entire

value chain or life cycle is drawn out, and the size of each flow is calculated. Other methods

also use system diagrams to link flows to specific activities. An example is Activity-based

Spatial MFA (AS-MFA), developed within the REPAiR project (Geldermans et al. 2017). Figure

12 and Figure 13 below illustrate process diagrams for material flows from existing literature.

Figure 12: Typical supply chain visualised within the REPAiR project (Geldermans et al. 2017)

Process flow diagrams were already part of UMIS. However, because these diagrams were

not relevant to MultipliCity in its first MFA-based version, they were excluded from STAFDB. In

UMIS, the diagrams are developed by creating so-called subsystem specifications which are

then linked to each other. A subsystem defines a particular process-based activity within the

anthroposphere or within the natural environment. Within such a subsystem, the user defines

a transformative process (e.g. Quarrying), a material flow (e.g. 200t of iron ore), and a

distributive process (e.g. Transporting the ore to smelters). This subsystem could also have a

storage process, but this is not required. Once the subsystem is defined, it is given a specific

code based on the activities and the position within the bigger system (e.g. PEM.1;1;4). Within

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 16 -

UMIS data points are linked to a specific step in the process by including the subsystem code

within the data table.

Figure 13: Material cycle diagram from a research project on the global iron cycle (Wang, Müller, and Graedel 2007).

In order to embed a more scalable and normalised implementation of the flow diagram system,

STAFDB was equipped with a number of new tables. Firstly, a table was created to store

metadata about a particular flow diagram (see Figure 14). The idea behind this is that a

particular flow diagram (e.g. one that describes the water sector in a city) may be used by

multiple datasets. In fact, it is likely beneficial to the system if users are encouraged to re-use

existing flow diagrams in order to enhance comparability and standardise flow diagram-based

data visualisations. The table contains a limited number of fields, as shown in Figure 14.

Figure 14: Database table containing metadata about a flow diagram

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 17 -

A separate table (Figure 15) contains the individual elements within the flow diagram. Each

edge or vertex of this diagram is recorded independently, and the process table is referenced

to indicate both the origin and the destination (the material flow will move from origin to

destination).

Figure 15: Database table containing the individual blocks of the flow diagram

2.3.4. Independent structure

Lastly, the decision was made to develop STAFDB as a standalone app within the larger

Metabolism of Cities project. Within Django (the python framework used to build the Metabolism

of Cities website), apps are independent collections of files that contain models, views, and

static files which may be moved between different projects. In the previous structure of the

Metabolism of Cities platform, the stocks and flows database, the MultipliCity data visualisation

platform, and the other parts of the website were set up as highly correlated fragments that

could not function independently.

In the new structure, the STAFDB system is seen as a database structure that is intimately

integrated with the front- and back-end tools that are used to insert, edit, extract, and visualise

data. This makes it possible for this system to be used elsewhere. Integration of this system in

the Metabolism of Cities website is just one of multiple possible uses of this system. This is

expected to enhance uptake of this system, which ultimately enhances the longevity of this tool

and makes it more likely that improvements and updates continue to be made, to the benefit of

all that use this tool.

2.4. Structural overview

This section reflects on the core structure of STAFDB, after the CityLoops changes were

applied. Understanding these key components will help understand the general database

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 18 -

layout, and make it easier to unpack the SQL data dump that is provided in Annex 1. While

there are many more tables and the data structure is more complex than this, the core of the

STAFDB is formed by only a handful of tables. The focus for this part is on presenting this

simplified core structure as a foundation for understanding the full data structure.

Figure 16: A simplified overview of the key tables within STAFDB, and how they relate to the data table

The principal tables within the database structure are the following:

▪ Materials

This is a hierarchical materials list that contains all possible products and materials that

may be tracked. The lists are based on existing standard classifications like the

Harmonised System, CPA and others used by different statistical and international

organisations.

▪ Processes

These are economic or natural activities, structured in a hierarchical format. Various

activity catalogues can be used (for instance, the statistical classification of economic

activities in the European Community, abbreviated as NACE2).

2https://ec.europa.eu/eurostat/statistics-

explained/index.php/Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_%28NACE%29

https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_%28NACE%29
https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_%28NACE%29

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 19 -

▪ Reference spaces

Any type of system under study. A reference space refers to a physical place and could

range from a household or company premises to a continent or the entire planet.

▪ Flow Diagrams

A chain of connected processes that describe the life cycle or value chain of a product,

sector, or the process-based structure of the system under study. A flow diagram

describes how materials move through the system.

▪ Data

This table contains the actual data points (quantifying the flows), and it links to the

aforementioned tables. Each data point describes a material, which has a physical

origin and destination (reference spaces), and this flow is linked to a specific flow within

the larger system diagram (and thus also indirectly linked to specific processes).

These various tables are illustrated in Figure 16. The figure shows what a simplified setup looks

like and demonstrates the key tables and how they link to the data table. Figure 17 illustrates

the schematic overview of the tables in the database and how they are linked to each other.

Figure 17: Visual view of the different tables in the STAFDB schema. Annex 1 provides the underlying SQL code
for all the fields and tables.

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 20 -

In order to illustrate the complexity of information that is handled by the different tables, Figure

18 serves to show the material flow system diagram from an actual research project, and within

it highlighted areas that are linked to specific tables. The colour framed boxes and text highlight

where different components are stored in STAFDB.

Figure 18: Overview of the key tables used for different components of a dataset (corresponding to the same colours
as in Figure 16), illustrated with a material cycle diagram from a research project on the global iron cycle (Wang,
Müller, and Graedel 2007).

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 21 -

3. Going forward

It is unlikely that this new database structure represents a perfect, final version. Just like the

initial roll-out of STAFDB, this should be considered a work-in-progress that will continue to be

improved as it is being used. However, it is already based on a real-life implementation and

has been exposed to a diverse set of user needs. The implemented changes will make this

system more robust and provide flexibility where it has shown to be needed. Certain changes

and improvements are already expected and where possible catered for. The expectation is

that the new structure is solid enough to not require drastic changes that heavily affect front-

and back-end parts of the website when they are applied.

The following components are either already expected to be added later, or are so new that

they will be tested and are likely subject to refinement throughout the CityLoops project (and

possibly beyond this timeframe as well):

▪ Implementation of transfer coefficients. This is outside of the scope of the CityLoops

project, but it will be a welcome addition to enable usage of the system for managing

data gaps. We expect that transfer coefficients can be implemented in the future as an

add-on without requiring structural upheaval.

▪ Implementation of reference materials. Sometimes a system is analysed with respect

to a specific material, or material flow data is obtained in which the flow needs to be

associated with a reference material (for example, when recording the concentration of

one material inside another). This reference material can likely be easily implemented

within either the meta data of the dataset, or at the level of the process diagram blocks.

▪ Inclusion of data from IOA and LCA. As mentioned before, these methods were not part

of the first phase and the recent restructuring should now cater to data obtained using

these methods. However, only after seeing it in practice and having third parties use

the system can we tell if these changes are sufficient. A group of academic trial users

will assist in this process.

▪ Use of the CTEs in the tables with adjacency lists. This system was only tentatively

embedded in the first phase, and this wider roll-out will have to be tested. Performance

and ease-of-use of the CTEs will have to be reviewed as the actual system is being

developed.

▪ Material balancing and identification of gaps or information clashes. Through the use of

the process diagrams, it should be possible to identify where data gaps exist, or where

conflicting information is present (e.g. two data points providing different figures within

the same diagram). The system should be able to pick up on this and present these

discrepancies to the end user. This system needs to be tried.

▪ Nesting of reference spaces using the geocode systems. This is a new setup which

also has to be tested in a real-life context. It is expected that ISO 3166 will be as the

default geocode catalogue, but the suitability of this catalogue also has to be tested.

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 22 -

▪ Integration of the NACE codes and the STAFDB-specific process structure. The NACE

codes have provided a useful and consistent hierarchical list of economic activities.

However, the grouping of these activities is not compatible with the grouping required

for STAFDB to efficiently use the process diagram layer. These two lists have to be

merged in a way that the top-level classification is based on STAFDB requirements,

while the lower-level grouping consists of existing NACE structures and thus can

maintain a structure that is in effect equal to NACE data. This merge is not too

complicated to carry out, as it only entails the moving of economic activity (NACE)

codes into a limited number of top-level categories.

▪ Conversion of existing data and attempt to scale up. There is already data present in

the existing system which will have to be converted to this new format. Furthermore,

the database has always been developed with scaling in mind. Whether or not millions

and millions of data points, reference spaces, or other related entries can be efficiently

managed within this structure is to be tested.

Insights into the STAFDB schema and the structure itself will continuously be shared and

released within the open source repository of the Metabolism of Cities website. Once the

structure has been sufficiently tested additional documentation will be published and

disseminated.

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 23 -

Bibliography

Geldermans, Bob, Carolin Bellstedt, Enrico Formato, Viktor Varju, Zoltan Grunhut, Maria
Cerreta, Libera Amenta, Pasquale Inglese, Janneke van der Leer, and Alexander
Wandl. 2017. ‘Resource Management in Peri-Urban Areas (REPAiR): D3.1
Introduction to Methodology for Integrated Spatial, Material Flow and Social Analyses’.
http://h2020repair.eu/wp-
content/uploads/2018/03/Deliverable_3.1_Introduction_to_methodology.pdf.

Heeren, Niko, and Tomer Fishman. 2019. ‘A Database Seed for a Community-Driven Material
Intensity Research Platform’. Scientific Data 6 (1): 23. https://doi.org/10.1038/s41597-
019-0021-x.

Hoekman, Paul, Aristide Athanassiadis, João Meirelles de Miranda, Franziska Meinherz,
Gabriela Fernandez, and Yves Bettignies Cari. 2019. ‘The Global Urban Metabolism
Database’. https://doi.org/10.6084/m9.figshare.7326485.v1.

Myers, Rupert J., Tomer Fishman, Barbara K. Reck, and T. E. Graedel. 2019. ‘Unified
Materials Information System (UMIS): An Integrated Material Stocks and Flows Data
Structure’. Journal of Industrial Ecology 23 (1): 222–40.
https://doi.org/10.1111/jiec.12730.

Myers, Rupert J., Barbara K. Reck, and T. E. Graedel. 2019. ‘YSTAFDB, a Unified Database
of Material Stocks and Flows for Sustainability Science’. Scientific Data 6 (1): 1–13.
https://doi.org/10.1038/s41597-019-0085-7.

Pauliuk, Stefan, Niko Heeren, Mohammad Mahadi Hasan, and Daniel B. Müller. 2019. ‘A
General Data Model for Socioeconomic Metabolism and Its Implementation in an
Industrial Ecology Data Commons Prototype’. Journal of Industrial Ecology 23 (5):
1016–27. https://doi.org/10.1111/jiec.12890.

Pauliuk, Stefan, Guillaume Majeau‐Bettez, and Daniel B. Müller. 2015. ‘A General System

Structure and Accounting Framework for Socioeconomic Metabolism’. Journal of
Industrial Ecology 19 (5): 728–41. https://doi.org/10.1111/jiec.12306.

Vadim Tropashko. 2014. SQL Design Patterns Book. Rampant TechPress.
http://www.rampant-books.com/book_0601_sql_coding_styles.htm.

Villalba, Gara, and Paul Hoekman. 2018. ‘Using Web-Based Technology to Bring Hands-On
Urban Material Flow Analysis to the Classroom’. Journal of Industrial Ecology 22 (2):
434–42. https://doi.org/10.1111/jiec.12553.

Wang, Tao, Daniel B. Müller, and T. E. Graedel. 2007. ‘Forging the Anthropogenic Iron Cycle’.
Environmental Science & Technology 41 (14): 5120–29.
https://doi.org/10.1021/es062761t.

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 24 -

Annex 1

SQL dump with the complete database structure
--
-- PostgreSQL database dump
--

-- Dumped from database version 11.3 (Debian 11.3-1.pgdg90+1)
-- Dumped by pg_dump version 11.3 (Debian 11.3-1.pgdg90+1)

SET statement_timeout = 0;
SET lock_timeout = 0;
SET idle_in_transaction_session_timeout = 0;
SET client_encoding = 'UTF8';
SET standard_conforming_strings = on;
SELECT pg_catalog.set_config('search_path', '', false);
SET check_function_bodies = false;
SET xmloption = content;
SET client_min_messages = warning;
SET row_security = off;

SET default_tablespace = '';

SET default_with_oids = false;

--
-- Name: auth_user; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.auth_user (
 id integer NOT NULL,
 password character varying(128) NOT NULL,
 last_login timestamp with time zone,
 is_superuser boolean NOT NULL,
 username character varying(150) NOT NULL,
 first_name character varying(30) NOT NULL,
 last_name character varying(150) NOT NULL,
 email character varying(254) NOT NULL,
 is_staff boolean NOT NULL,
 is_active boolean NOT NULL,
 date_joined timestamp with time zone NOT NULL
);

ALTER TABLE public.auth_user OWNER TO postgres;

--
-- Name: auth_user_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.auth_user_id_seq
 AS integer

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 25 -

 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.auth_user_id_seq OWNER TO postgres;

--
-- Name: auth_user_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: postgres
--

ALTER SEQUENCE public.auth_user_id_seq OWNED BY public.auth_user.id;

--
-- Name: stafdb_csv; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_csv (
 id integer NOT NULL,
 created_at timestamp with time zone NOT NULL,
 name character varying(255) NOT NULL,
 original_name character varying(255) NOT NULL,
 imported boolean NOT NULL,
 active boolean NOT NULL,
 dataset_id integer,
 user_id integer NOT NULL
);

ALTER TABLE public.stafdb_csv OWNER TO postgres;

--
-- Name: stafdb_csv_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_csv_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_csv_id_seq OWNER TO postgres;

--
-- Name: stafdb_csv_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: postgres
--

ALTER SEQUENCE public.stafdb_csv_id_seq OWNED BY public.stafdb_csv.id;

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 26 -

--
-- Name: stafdb_data; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_data (
 id integer NOT NULL,
 quantity double precision,
 material_name character varying(500),
 comments text,
 csv_id integer,
 dataset_id integer NOT NULL,
 destination_space_id integer,
 flow_id integer NOT NULL,
 material_id integer,
 origin_space_id integer,
 subset_id integer,
 timeframe_id integer NOT NULL,
 unit_id integer
);

ALTER TABLE public.stafdb_data OWNER TO postgres;

--
-- Name: stafdb_data_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_data_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_data_id_seq OWNER TO postgres;

--
-- Name: stafdb_data_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: postgres
--

ALTER SEQUENCE public.stafdb_data_id_seq OWNED BY public.stafdb_data.id;

--
-- Name: stafdb_dataset; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_dataset (
 id integer NOT NULL,
 name character varying(255) NOT NULL,
 notes text,
 replication text,
 active boolean NOT NULL,
 access_id integer,

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 27 -

 completeness_id integer,
 geographical_correlation_id integer,
 reliability_id integer
);

ALTER TABLE public.stafdb_dataset OWNER TO postgres;

--
-- Name: stafdb_dataset_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_dataset_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_dataset_id_seq OWNER TO postgres;

--
-- Name: stafdb_dataset_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner:
postgres
--

ALTER SEQUENCE public.stafdb_dataset_id_seq OWNED BY public.stafdb_dataset.id;

--
-- Name: stafdb_dataset_references; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_dataset_references (
 id integer NOT NULL,
 dataset_id integer NOT NULL,
 reference_id integer NOT NULL
);

ALTER TABLE public.stafdb_dataset_references OWNER TO postgres;

--
-- Name: stafdb_dataset_references_id_seq; Type: SEQUENCE; Schema: public; Owner:
postgres
--

CREATE SEQUENCE public.stafdb_dataset_references_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 28 -

ALTER TABLE public.stafdb_dataset_references_id_seq OWNER TO postgres;

--
-- Name: stafdb_dataset_references_id_seq; Type: SEQUENCE OWNED BY; Schema: public;
Owner: postgres
--

ALTER SEQUENCE public.stafdb_dataset_references_id_seq OWNED BY
public.stafdb_dataset_references.id;

--
-- Name: stafdb_dqi; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_dqi (
 id integer NOT NULL,
 name character varying(40) NOT NULL
);

ALTER TABLE public.stafdb_dqi OWNER TO postgres;

--
-- Name: stafdb_dqi_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_dqi_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_dqi_id_seq OWNER TO postgres;

--
-- Name: stafdb_dqi_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: postgres
--

ALTER SEQUENCE public.stafdb_dqi_id_seq OWNED BY public.stafdb_dqi.id;

--
-- Name: stafdb_dqirating; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_dqirating (
 id integer NOT NULL,
 score smallint NOT NULL,
 description character varying(255) NOT NULL,
 indicator_id integer,

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 29 -

 CONSTRAINT stafdb_dqirating_score_check CHECK ((score >= 0))
);

ALTER TABLE public.stafdb_dqirating OWNER TO postgres;

--
-- Name: stafdb_dqirating_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_dqirating_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_dqirating_id_seq OWNER TO postgres;

--
-- Name: stafdb_dqirating_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner:
postgres
--

ALTER SEQUENCE public.stafdb_dqirating_id_seq OWNED BY public.stafdb_dqirating.id;

--
-- Name: stafdb_flowblocks; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_flowblocks (
 id integer NOT NULL,
 description text,
 destination_id integer NOT NULL,
 diagram_id integer NOT NULL,
 origin_id integer NOT NULL
);

ALTER TABLE public.stafdb_flowblocks OWNER TO postgres;

--
-- Name: stafdb_flowblocks_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_flowblocks_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 30 -

ALTER TABLE public.stafdb_flowblocks_id_seq OWNER TO postgres;

--
-- Name: stafdb_flowblocks_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner:
postgres
--

ALTER SEQUENCE public.stafdb_flowblocks_id_seq OWNED BY
public.stafdb_flowblocks.id;

--
-- Name: stafdb_flowdiagram; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_flowdiagram (
 id integer NOT NULL,
 name character varying(255) NOT NULL,
 description text
);

ALTER TABLE public.stafdb_flowdiagram OWNER TO postgres;

--
-- Name: stafdb_flowdiagram_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_flowdiagram_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_flowdiagram_id_seq OWNER TO postgres;

--
-- Name: stafdb_flowdiagram_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner:
postgres
--

ALTER SEQUENCE public.stafdb_flowdiagram_id_seq OWNED BY
public.stafdb_flowdiagram.id;

--
-- Name: stafdb_geocode; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_geocode (
 id integer NOT NULL,
 name character varying(255) NOT NULL,

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 31 -

 description text,
 parent_id integer,
 system_id integer NOT NULL
);

ALTER TABLE public.stafdb_geocode OWNER TO postgres;

--
-- Name: stafdb_geocode_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_geocode_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_geocode_id_seq OWNER TO postgres;

--
-- Name: stafdb_geocode_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner:
postgres
--

ALTER SEQUENCE public.stafdb_geocode_id_seq OWNED BY public.stafdb_geocode.id;

--
-- Name: stafdb_geocodesystem; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_geocodesystem (
 id integer NOT NULL,
 name character varying(255) NOT NULL,
 description text,
 url character varying(200)
);

ALTER TABLE public.stafdb_geocodesystem OWNER TO postgres;

--
-- Name: stafdb_geocodesystem_id_seq; Type: SEQUENCE; Schema: public; Owner:
postgres
--

CREATE SEQUENCE public.stafdb_geocodesystem_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 32 -

 CACHE 1;

ALTER TABLE public.stafdb_geocodesystem_id_seq OWNER TO postgres;

--
-- Name: stafdb_geocodesystem_id_seq; Type: SEQUENCE OWNED BY; Schema: public;
Owner: postgres
--

ALTER SEQUENCE public.stafdb_geocodesystem_id_seq OWNED BY
public.stafdb_geocodesystem.id;

--
-- Name: stafdb_material; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_material (
 id integer NOT NULL,
 name text NOT NULL,
 code character varying(255),
 description text,
 catalog_id integer,
 parent_id integer
);

ALTER TABLE public.stafdb_material OWNER TO postgres;

--
-- Name: stafdb_material_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_material_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_material_id_seq OWNER TO postgres;

--
-- Name: stafdb_material_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner:
postgres
--

ALTER SEQUENCE public.stafdb_material_id_seq OWNED BY public.stafdb_material.id;

--
-- Name: stafdb_materialcatalog; Type: TABLE; Schema: public; Owner: postgres
--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 33 -

CREATE TABLE public.stafdb_materialcatalog (
 id integer NOT NULL,
 name character varying(255) NOT NULL,
 description text,
 url character varying(255)
);

ALTER TABLE public.stafdb_materialcatalog OWNER TO postgres;

--
-- Name: stafdb_materialcatalog_id_seq; Type: SEQUENCE; Schema: public; Owner:
postgres
--

CREATE SEQUENCE public.stafdb_materialcatalog_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_materialcatalog_id_seq OWNER TO postgres;

--
-- Name: stafdb_materialcatalog_id_seq; Type: SEQUENCE OWNED BY; Schema: public;
Owner: postgres
--

ALTER SEQUENCE public.stafdb_materialcatalog_id_seq OWNED BY
public.stafdb_materialcatalog.id;

--
-- Name: stafdb_process; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_process (
 id integer NOT NULL,
 name character varying(255) NOT NULL,
 code character varying(255),
 description text,
 slug character varying(255),
 parent_id integer
);

ALTER TABLE public.stafdb_process OWNER TO postgres;

--
-- Name: stafdb_process_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 34 -

CREATE SEQUENCE public.stafdb_process_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_process_id_seq OWNER TO postgres;

--
-- Name: stafdb_process_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner:
postgres
--

ALTER SEQUENCE public.stafdb_process_id_seq OWNED BY public.stafdb_process.id;

--
-- Name: stafdb_reference; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_reference (
 id integer NOT NULL,
 title character varying(255) NOT NULL,
 authors character varying(255) NOT NULL,
 url character varying(255) NOT NULL,
 description text,
 active boolean NOT NULL
);

ALTER TABLE public.stafdb_reference OWNER TO postgres;

--
-- Name: stafdb_reference_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_reference_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_reference_id_seq OWNER TO postgres;

--
-- Name: stafdb_reference_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner:
postgres
--

ALTER SEQUENCE public.stafdb_reference_id_seq OWNED BY public.stafdb_reference.id;

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 35 -

--
-- Name: stafdb_referencespace; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_referencespace (
 id integer NOT NULL,
 name character varying(255) NOT NULL,
 description text,
 url character varying(255),
 slug character varying(255),
 active boolean NOT NULL,
 location_id integer,
 parent_id integer
);

ALTER TABLE public.stafdb_referencespace OWNER TO postgres;

--
-- Name: stafdb_referencespace_geocode_id_seq; Type: SEQUENCE; Schema: public;
Owner: postgres
--

CREATE SEQUENCE public.stafdb_referencespace_geocode_id_seq
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_referencespace_geocode_id_seq OWNER TO postgres;

--
-- Name: stafdb_referencespace_geocode; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_referencespace_geocode (
 id integer DEFAULT
nextval('public.stafdb_referencespace_geocode_id_seq'::regclass) NOT NULL,
 referencespace_id integer NOT NULL,
 geocode_id integer NOT NULL
);

ALTER TABLE public.stafdb_referencespace_geocode OWNER TO postgres;

--
-- Name: stafdb_referencespace_id_seq; Type: SEQUENCE; Schema: public; Owner:
postgres
--

CREATE SEQUENCE public.stafdb_referencespace_id_seq
 AS integer

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 36 -

 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_referencespace_id_seq OWNER TO postgres;

--
-- Name: stafdb_referencespace_id_seq; Type: SEQUENCE OWNED BY; Schema: public;
Owner: postgres
--

ALTER SEQUENCE public.stafdb_referencespace_id_seq OWNED BY
public.stafdb_referencespace.id;

--
-- Name: stafdb_referencespacelocation; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_referencespacelocation (
 id integer NOT NULL,
 name character varying(255),
 lat character varying(20),
 lng character varying(20),
 area double precision,
 default_zoom smallint,
 description text,
 start date,
 "end" date,
 source character varying(255),
 geojson text,
 active boolean NOT NULL,
 space_id integer NOT NULL,
 CONSTRAINT stafdb_referencespacelocation_default_zoom_check CHECK
((default_zoom >= 0))
);

ALTER TABLE public.stafdb_referencespacelocation OWNER TO postgres;

--
-- Name: stafdb_referencespacelocation_id_seq; Type: SEQUENCE; Schema: public;
Owner: postgres
--

CREATE SEQUENCE public.stafdb_referencespacelocation_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 37 -

ALTER TABLE public.stafdb_referencespacelocation_id_seq OWNER TO postgres;

--
-- Name: stafdb_referencespacelocation_id_seq; Type: SEQUENCE OWNED BY; Schema:
public; Owner: postgres
--

ALTER SEQUENCE public.stafdb_referencespacelocation_id_seq OWNED BY
public.stafdb_referencespacelocation.id;

--
-- Name: stafdb_timeperiod; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_timeperiod (
 id integer NOT NULL,
 start date NOT NULL,
 "end" date,
 name character varying(255) NOT NULL
);

ALTER TABLE public.stafdb_timeperiod OWNER TO postgres;

--
-- Name: stafdb_timeperiod_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_timeperiod_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_timeperiod_id_seq OWNER TO postgres;

--
-- Name: stafdb_timeperiod_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner:
postgres
--

ALTER SEQUENCE public.stafdb_timeperiod_id_seq OWNED BY
public.stafdb_timeperiod.id;

--
-- Name: stafdb_unit; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.stafdb_unit (
 id integer NOT NULL,

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 38 -

 symbol character varying(255) NOT NULL,
 name character varying(255) NOT NULL,
 notes text
);

ALTER TABLE public.stafdb_unit OWNER TO postgres;

--
-- Name: stafdb_unit_id_seq; Type: SEQUENCE; Schema: public; Owner: postgres
--

CREATE SEQUENCE public.stafdb_unit_id_seq
 AS integer
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER TABLE public.stafdb_unit_id_seq OWNER TO postgres;

--
-- Name: stafdb_unit_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: postgres
--

ALTER SEQUENCE public.stafdb_unit_id_seq OWNED BY public.stafdb_unit.id;

--
-- Name: auth_user id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.auth_user ALTER COLUMN id SET DEFAULT
nextval('public.auth_user_id_seq'::regclass);

--
-- Name: stafdb_csv id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_csv ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_csv_id_seq'::regclass);

--
-- Name: stafdb_data id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_data ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_data_id_seq'::regclass);

--
-- Name: stafdb_dataset id; Type: DEFAULT; Schema: public; Owner: postgres

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 39 -

--

ALTER TABLE ONLY public.stafdb_dataset ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_dataset_id_seq'::regclass);

--
-- Name: stafdb_dataset_references id; Type: DEFAULT; Schema: public; Owner:
postgres
--

ALTER TABLE ONLY public.stafdb_dataset_references ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_dataset_references_id_seq'::regclass);

--
-- Name: stafdb_dqi id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_dqi ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_dqi_id_seq'::regclass);

--
-- Name: stafdb_dqirating id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_dqirating ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_dqirating_id_seq'::regclass);

--
-- Name: stafdb_flowblocks id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_flowblocks ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_flowblocks_id_seq'::regclass);

--
-- Name: stafdb_flowdiagram id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_flowdiagram ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_flowdiagram_id_seq'::regclass);

--
-- Name: stafdb_geocode id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_geocode ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_geocode_id_seq'::regclass);

--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 40 -

-- Name: stafdb_geocodesystem id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_geocodesystem ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_geocodesystem_id_seq'::regclass);

--
-- Name: stafdb_material id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_material ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_material_id_seq'::regclass);

--
-- Name: stafdb_materialcatalog id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_materialcatalog ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_materialcatalog_id_seq'::regclass);

--
-- Name: stafdb_process id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_process ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_process_id_seq'::regclass);

--
-- Name: stafdb_reference id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_reference ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_reference_id_seq'::regclass);

--
-- Name: stafdb_referencespace id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_referencespace ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_referencespace_id_seq'::regclass);

--
-- Name: stafdb_referencespacelocation id; Type: DEFAULT; Schema: public; Owner:
postgres
--

ALTER TABLE ONLY public.stafdb_referencespacelocation ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_referencespacelocation_id_seq'::regclass);

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 41 -

--
-- Name: stafdb_timeperiod id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_timeperiod ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_timeperiod_id_seq'::regclass);

--
-- Name: stafdb_unit id; Type: DEFAULT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_unit ALTER COLUMN id SET DEFAULT
nextval('public.stafdb_unit_id_seq'::regclass);

--
-- Name: auth_user auth_user_pkey; Type: CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.auth_user
 ADD CONSTRAINT auth_user_pkey PRIMARY KEY (id);

--
-- Name: auth_user auth_user_username_key; Type: CONSTRAINT; Schema: public; Owner:
postgres
--

ALTER TABLE ONLY public.auth_user
 ADD CONSTRAINT auth_user_username_key UNIQUE (username);

--
-- Name: stafdb_csv stafdb_csv_pkey; Type: CONSTRAINT; Schema: public; Owner:
postgres
--

ALTER TABLE ONLY public.stafdb_csv
 ADD CONSTRAINT stafdb_csv_pkey PRIMARY KEY (id);

--
-- Name: stafdb_data stafdb_data_pkey; Type: CONSTRAINT; Schema: public; Owner:
postgres
--

ALTER TABLE ONLY public.stafdb_data
 ADD CONSTRAINT stafdb_data_pkey PRIMARY KEY (id);

--
-- Name: stafdb_dataset stafdb_dataset_pkey; Type: CONSTRAINT; Schema: public;
Owner: postgres
--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 42 -

ALTER TABLE ONLY public.stafdb_dataset
 ADD CONSTRAINT stafdb_dataset_pkey PRIMARY KEY (id);

--
-- Name: stafdb_dataset_references
stafdb_dataset_references_dataset_id_reference_id_fd6d744c_uniq; Type: CONSTRAINT;
Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_dataset_references
 ADD CONSTRAINT stafdb_dataset_references_dataset_id_reference_id_fd6d744c_uniq
UNIQUE (dataset_id, reference_id);

--
-- Name: stafdb_dataset_references stafdb_dataset_references_pkey; Type:
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_dataset_references
 ADD CONSTRAINT stafdb_dataset_references_pkey PRIMARY KEY (id);

--
-- Name: stafdb_dqi stafdb_dqi_pkey; Type: CONSTRAINT; Schema: public; Owner:
postgres
--

ALTER TABLE ONLY public.stafdb_dqi
 ADD CONSTRAINT stafdb_dqi_pkey PRIMARY KEY (id);

--
-- Name: stafdb_dqirating stafdb_dqirating_pkey; Type: CONSTRAINT; Schema: public;
Owner: postgres
--

ALTER TABLE ONLY public.stafdb_dqirating
 ADD CONSTRAINT stafdb_dqirating_pkey PRIMARY KEY (id);

--
-- Name: stafdb_flowblocks stafdb_flowblocks_pkey; Type: CONSTRAINT; Schema: public;
Owner: postgres
--

ALTER TABLE ONLY public.stafdb_flowblocks
 ADD CONSTRAINT stafdb_flowblocks_pkey PRIMARY KEY (id);

--
-- Name: stafdb_flowdiagram stafdb_flowdiagram_pkey; Type: CONSTRAINT; Schema:
public; Owner: postgres
--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 43 -

ALTER TABLE ONLY public.stafdb_flowdiagram
 ADD CONSTRAINT stafdb_flowdiagram_pkey PRIMARY KEY (id);

--
-- Name: stafdb_geocode stafdb_geocode_pkey; Type: CONSTRAINT; Schema: public;
Owner: postgres
--

ALTER TABLE ONLY public.stafdb_geocode
 ADD CONSTRAINT stafdb_geocode_pkey PRIMARY KEY (id);

--
-- Name: stafdb_geocodesystem stafdb_geocodesystem_pkey; Type: CONSTRAINT; Schema:
public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_geocodesystem
 ADD CONSTRAINT stafdb_geocodesystem_pkey PRIMARY KEY (id);

--
-- Name: stafdb_material stafdb_material_pkey; Type: CONSTRAINT; Schema: public;
Owner: postgres
--

ALTER TABLE ONLY public.stafdb_material
 ADD CONSTRAINT stafdb_material_pkey PRIMARY KEY (id);

--
-- Name: stafdb_materialcatalog stafdb_materialcatalog_pkey; Type: CONSTRAINT;
Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_materialcatalog
 ADD CONSTRAINT stafdb_materialcatalog_pkey PRIMARY KEY (id);

--
-- Name: stafdb_process stafdb_process_pkey; Type: CONSTRAINT; Schema: public;
Owner: postgres
--

ALTER TABLE ONLY public.stafdb_process
 ADD CONSTRAINT stafdb_process_pkey PRIMARY KEY (id);

--
-- Name: stafdb_reference stafdb_reference_pkey; Type: CONSTRAINT; Schema: public;
Owner: postgres
--

ALTER TABLE ONLY public.stafdb_reference
 ADD CONSTRAINT stafdb_reference_pkey PRIMARY KEY (id);

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 44 -

--
-- Name: stafdb_referencespace_geocode
stafdb_referencespace_ge_referencespace_id_geocod_48b2ba6a_uniq; Type: CONSTRAINT;
Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_referencespace_geocode
 ADD CONSTRAINT stafdb_referencespace_ge_referencespace_id_geocod_48b2ba6a_uniq
UNIQUE (referencespace_id, geocode_id);

--
-- Name: stafdb_referencespace_geocode stafdb_referencespace_geocode_pkey; Type:
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_referencespace_geocode
 ADD CONSTRAINT stafdb_referencespace_geocode_pkey PRIMARY KEY (id);

--
-- Name: stafdb_referencespace stafdb_referencespace_pkey; Type: CONSTRAINT; Schema:
public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_referencespace
 ADD CONSTRAINT stafdb_referencespace_pkey PRIMARY KEY (id);

--
-- Name: stafdb_referencespacelocation stafdb_referencespacelocation_pkey; Type:
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_referencespacelocation
 ADD CONSTRAINT stafdb_referencespacelocation_pkey PRIMARY KEY (id);

--
-- Name: stafdb_timeperiod stafdb_timeperiod_pkey; Type: CONSTRAINT; Schema: public;
Owner: postgres
--

ALTER TABLE ONLY public.stafdb_timeperiod
 ADD CONSTRAINT stafdb_timeperiod_pkey PRIMARY KEY (id);

--
-- Name: stafdb_unit stafdb_unit_pkey; Type: CONSTRAINT; Schema: public; Owner:
postgres
--

ALTER TABLE ONLY public.stafdb_unit
 ADD CONSTRAINT stafdb_unit_pkey PRIMARY KEY (id);

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 45 -

--
-- Name: auth_user_username_6821ab7c_like; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX auth_user_username_6821ab7c_like ON public.auth_user USING btree
(username varchar_pattern_ops);

--
-- Name: stafdb_csv_active_5ada15df; Type: INDEX; Schema: public; Owner: postgres
--

CREATE INDEX stafdb_csv_active_5ada15df ON public.stafdb_csv USING btree (active);

--
-- Name: stafdb_csv_dataset_id_f5cbc137; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_csv_dataset_id_f5cbc137 ON public.stafdb_csv USING btree
(dataset_id);

--
-- Name: stafdb_csv_user_id_43e6dd03; Type: INDEX; Schema: public; Owner: postgres
--

CREATE INDEX stafdb_csv_user_id_43e6dd03 ON public.stafdb_csv USING btree (user_id);

--
-- Name: stafdb_data_csv_id_464851c6; Type: INDEX; Schema: public; Owner: postgres
--

CREATE INDEX stafdb_data_csv_id_464851c6 ON public.stafdb_data USING btree (csv_id);

--
-- Name: stafdb_data_dataset_id_4bb36b25; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_data_dataset_id_4bb36b25 ON public.stafdb_data USING btree
(dataset_id);

--
-- Name: stafdb_data_destination_space_id_8b3a623c; Type: INDEX; Schema: public;
Owner: postgres
--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 46 -

CREATE INDEX stafdb_data_destination_space_id_8b3a623c ON public.stafdb_data USING
btree (destination_space_id);

--
-- Name: stafdb_data_flow_id_3cfa90e0; Type: INDEX; Schema: public; Owner: postgres
--

CREATE INDEX stafdb_data_flow_id_3cfa90e0 ON public.stafdb_data USING btree
(flow_id);

--
-- Name: stafdb_data_material_id_1dd63459; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_data_material_id_1dd63459 ON public.stafdb_data USING btree
(material_id);

--
-- Name: stafdb_data_origin_space_id_503fc524; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_data_origin_space_id_503fc524 ON public.stafdb_data USING btree
(origin_space_id);

--
-- Name: stafdb_data_subset_id_c24da2b1; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_data_subset_id_c24da2b1 ON public.stafdb_data USING btree
(subset_id);

--
-- Name: stafdb_data_timeframe_id_8663d339; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_data_timeframe_id_8663d339 ON public.stafdb_data USING btree
(timeframe_id);

--
-- Name: stafdb_data_unit_id_f4f15ba8; Type: INDEX; Schema: public; Owner: postgres
--

CREATE INDEX stafdb_data_unit_id_f4f15ba8 ON public.stafdb_data USING btree
(unit_id);

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 47 -

--
-- Name: stafdb_dataset_access_id_5c5fc94f; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_dataset_access_id_5c5fc94f ON public.stafdb_dataset USING btree
(access_id);

--
-- Name: stafdb_dataset_active_b7e12305; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_dataset_active_b7e12305 ON public.stafdb_dataset USING btree
(active);

--
-- Name: stafdb_dataset_completeness_id_911eee85; Type: INDEX; Schema: public;
Owner: postgres
--

CREATE INDEX stafdb_dataset_completeness_id_911eee85 ON public.stafdb_dataset USING
btree (completeness_id);

--
-- Name: stafdb_dataset_geographical_correlation_id_2c6ca2b7; Type: INDEX; Schema:
public; Owner: postgres
--

CREATE INDEX stafdb_dataset_geographical_correlation_id_2c6ca2b7 ON
public.stafdb_dataset USING btree (geographical_correlation_id);

--
-- Name: stafdb_dataset_references_dataset_id_a5be5731; Type: INDEX; Schema: public;
Owner: postgres
--

CREATE INDEX stafdb_dataset_references_dataset_id_a5be5731 ON
public.stafdb_dataset_references USING btree (dataset_id);

--
-- Name: stafdb_dataset_references_reference_id_74570b6a; Type: INDEX; Schema:
public; Owner: postgres
--

CREATE INDEX stafdb_dataset_references_reference_id_74570b6a ON
public.stafdb_dataset_references USING btree (reference_id);

--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 48 -

-- Name: stafdb_dataset_reliability_id_a3430559; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_dataset_reliability_id_a3430559 ON public.stafdb_dataset USING
btree (reliability_id);

--
-- Name: stafdb_dqirating_indicator_id_772236ae; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_dqirating_indicator_id_772236ae ON public.stafdb_dqirating
USING btree (indicator_id);

--
-- Name: stafdb_flowblocks_destination_id_7d04261c; Type: INDEX; Schema: public;
Owner: postgres
--

CREATE INDEX stafdb_flowblocks_destination_id_7d04261c ON public.stafdb_flowblocks
USING btree (destination_id);

--
-- Name: stafdb_flowblocks_diagram_id_206862fd; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_flowblocks_diagram_id_206862fd ON public.stafdb_flowblocks
USING btree (diagram_id);

--
-- Name: stafdb_flowblocks_origin_id_4b13114d; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_flowblocks_origin_id_4b13114d ON public.stafdb_flowblocks USING
btree (origin_id);

--
-- Name: stafdb_geocode_parent_id_c40eb671; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_geocode_parent_id_c40eb671 ON public.stafdb_geocode USING btree
(parent_id);

--
-- Name: stafdb_geocode_system_id_1943b420; Type: INDEX; Schema: public; Owner:
postgres

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 49 -

--

CREATE INDEX stafdb_geocode_system_id_1943b420 ON public.stafdb_geocode USING btree
(system_id);

--
-- Name: stafdb_material_catalog_id_32bd10bf; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_material_catalog_id_32bd10bf ON public.stafdb_material USING
btree (catalog_id);

--
-- Name: stafdb_material_code_80d3fe5e; Type: INDEX; Schema: public; Owner: postgres
--

CREATE INDEX stafdb_material_code_80d3fe5e ON public.stafdb_material USING btree
(code);

--
-- Name: stafdb_material_code_80d3fe5e_like; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_material_code_80d3fe5e_like ON public.stafdb_material USING
btree (code varchar_pattern_ops);

--
-- Name: stafdb_material_name_66b1f923; Type: INDEX; Schema: public; Owner: postgres
--

CREATE INDEX stafdb_material_name_66b1f923 ON public.stafdb_material USING btree
(name);

--
-- Name: stafdb_material_name_66b1f923_like; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_material_name_66b1f923_like ON public.stafdb_material USING
btree (name text_pattern_ops);

--
-- Name: stafdb_material_parent_id_dd728ec4; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_material_parent_id_dd728ec4 ON public.stafdb_material USING
btree (parent_id);

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 50 -

--
-- Name: stafdb_process_code_4f6d7229; Type: INDEX; Schema: public; Owner: postgres
--

CREATE INDEX stafdb_process_code_4f6d7229 ON public.stafdb_process USING btree
(code);

--
-- Name: stafdb_process_code_4f6d7229_like; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_process_code_4f6d7229_like ON public.stafdb_process USING btree
(code varchar_pattern_ops);

--
-- Name: stafdb_process_name_0f9e0fe1; Type: INDEX; Schema: public; Owner: postgres
--

CREATE INDEX stafdb_process_name_0f9e0fe1 ON public.stafdb_process USING btree
(name);

--
-- Name: stafdb_process_name_0f9e0fe1_like; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_process_name_0f9e0fe1_like ON public.stafdb_process USING btree
(name varchar_pattern_ops);

--
-- Name: stafdb_process_parent_id_bc4c539b; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_process_parent_id_bc4c539b ON public.stafdb_process USING btree
(parent_id);

--
-- Name: stafdb_process_slug_14bbbbf2; Type: INDEX; Schema: public; Owner: postgres
--

CREATE INDEX stafdb_process_slug_14bbbbf2 ON public.stafdb_process USING btree
(slug);

--
-- Name: stafdb_process_slug_14bbbbf2_like; Type: INDEX; Schema: public; Owner:
postgres

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 51 -

--

CREATE INDEX stafdb_process_slug_14bbbbf2_like ON public.stafdb_process USING btree
(slug varchar_pattern_ops);

--
-- Name: stafdb_referencespace_active_24962fe3; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_referencespace_active_24962fe3 ON public.stafdb_referencespace
USING btree (active);

--
-- Name: stafdb_referencespace_geocode_geocode_id_f11d0396; Type: INDEX; Schema:
public; Owner: postgres
--

CREATE INDEX stafdb_referencespace_geocode_geocode_id_f11d0396 ON
public.stafdb_referencespace_geocode USING btree (geocode_id);

--
-- Name: stafdb_referencespace_geocode_referencespace_id_3bb6d502; Type: INDEX;
Schema: public; Owner: postgres
--

CREATE INDEX stafdb_referencespace_geocode_referencespace_id_3bb6d502 ON
public.stafdb_referencespace_geocode USING btree (referencespace_id);

--
-- Name: stafdb_referencespace_location_id_e55f2a80; Type: INDEX; Schema: public;
Owner: postgres
--

CREATE INDEX stafdb_referencespace_location_id_e55f2a80 ON
public.stafdb_referencespace USING btree (location_id);

--
-- Name: stafdb_referencespace_name_5b76bb39; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_referencespace_name_5b76bb39 ON public.stafdb_referencespace
USING btree (name);

--
-- Name: stafdb_referencespace_name_5b76bb39_like; Type: INDEX; Schema: public;
Owner: postgres
--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 52 -

CREATE INDEX stafdb_referencespace_name_5b76bb39_like ON
public.stafdb_referencespace USING btree (name varchar_pattern_ops);

--
-- Name: stafdb_referencespace_parent_id_14e1ebb6; Type: INDEX; Schema: public;
Owner: postgres
--

CREATE INDEX stafdb_referencespace_parent_id_14e1ebb6 ON
public.stafdb_referencespace USING btree (parent_id);

--
-- Name: stafdb_referencespace_slug_afc2f623; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_referencespace_slug_afc2f623 ON public.stafdb_referencespace
USING btree (slug);

--
-- Name: stafdb_referencespace_slug_afc2f623_like; Type: INDEX; Schema: public;
Owner: postgres
--

CREATE INDEX stafdb_referencespace_slug_afc2f623_like ON
public.stafdb_referencespace USING btree (slug varchar_pattern_ops);

--
-- Name: stafdb_referencespacelocation_active_edf887a0; Type: INDEX; Schema: public;
Owner: postgres
--

CREATE INDEX stafdb_referencespacelocation_active_edf887a0 ON
public.stafdb_referencespacelocation USING btree (active);

--
-- Name: stafdb_referencespacelocation_end_83501dc3; Type: INDEX; Schema: public;
Owner: postgres
--

CREATE INDEX stafdb_referencespacelocation_end_83501dc3 ON
public.stafdb_referencespacelocation USING btree ("end");

--
-- Name: stafdb_referencespacelocation_space_id_02983803; Type: INDEX; Schema:
public; Owner: postgres
--

CREATE INDEX stafdb_referencespacelocation_space_id_02983803 ON
public.stafdb_referencespacelocation USING btree (space_id);

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 53 -

--
-- Name: stafdb_referencespacelocation_start_a48f177b; Type: INDEX; Schema: public;
Owner: postgres
--

CREATE INDEX stafdb_referencespacelocation_start_a48f177b ON
public.stafdb_referencespacelocation USING btree (start);

--
-- Name: stafdb_timeperiod_end_d5bad739; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_timeperiod_end_d5bad739 ON public.stafdb_timeperiod USING btree
("end");

--
-- Name: stafdb_timeperiod_name_3dab2e31; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_timeperiod_name_3dab2e31 ON public.stafdb_timeperiod USING btree
(name);

--
-- Name: stafdb_timeperiod_name_3dab2e31_like; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_timeperiod_name_3dab2e31_like ON public.stafdb_timeperiod USING
btree (name varchar_pattern_ops);

--
-- Name: stafdb_timeperiod_start_a9fa7bad; Type: INDEX; Schema: public; Owner:
postgres
--

CREATE INDEX stafdb_timeperiod_start_a9fa7bad ON public.stafdb_timeperiod USING
btree (start);

--
-- Name: stafdb_csv stafdb_csv_dataset_id_f5cbc137_fk_stafdb_dataset_id; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_csv
 ADD CONSTRAINT stafdb_csv_dataset_id_f5cbc137_fk_stafdb_dataset_id FOREIGN KEY
(dataset_id) REFERENCES public.stafdb_dataset(id) DEFERRABLE INITIALLY DEFERRED;

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 54 -

--
-- Name: stafdb_csv stafdb_csv_user_id_43e6dd03_fk_auth_user_id; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_csv
 ADD CONSTRAINT stafdb_csv_user_id_43e6dd03_fk_auth_user_id FOREIGN KEY
(user_id) REFERENCES public.auth_user(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_data stafdb_data_csv_id_464851c6_fk_stafdb_csv_id; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_data
 ADD CONSTRAINT stafdb_data_csv_id_464851c6_fk_stafdb_csv_id FOREIGN KEY
(csv_id) REFERENCES public.stafdb_csv(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_data stafdb_data_dataset_id_4bb36b25_fk_stafdb_dataset_id; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_data
 ADD CONSTRAINT stafdb_data_dataset_id_4bb36b25_fk_stafdb_dataset_id FOREIGN KEY
(dataset_id) REFERENCES public.stafdb_dataset(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_data stafdb_data_destination_space_id_8b3a623c_fk_stafdb_re; Type:
FK CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_data
 ADD CONSTRAINT stafdb_data_destination_space_id_8b3a623c_fk_stafdb_re FOREIGN
KEY (destination_space_id) REFERENCES public.stafdb_referencespace(id) DEFERRABLE
INITIALLY DEFERRED;

--
-- Name: stafdb_data stafdb_data_flow_id_3cfa90e0_fk_stafdb_flowblocks_id; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_data
 ADD CONSTRAINT stafdb_data_flow_id_3cfa90e0_fk_stafdb_flowblocks_id FOREIGN KEY
(flow_id) REFERENCES public.stafdb_flowblocks(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_data stafdb_data_material_id_1dd63459_fk_stafdb_material_id; Type:
FK CONSTRAINT; Schema: public; Owner: postgres
--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 55 -

ALTER TABLE ONLY public.stafdb_data
 ADD CONSTRAINT stafdb_data_material_id_1dd63459_fk_stafdb_material_id FOREIGN
KEY (material_id) REFERENCES public.stafdb_material(id) DEFERRABLE INITIALLY
DEFERRED;

--
-- Name: stafdb_data stafdb_data_origin_space_id_503fc524_fk_stafdb_re; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_data
 ADD CONSTRAINT stafdb_data_origin_space_id_503fc524_fk_stafdb_re FOREIGN KEY
(origin_space_id) REFERENCES public.stafdb_referencespace(id) DEFERRABLE INITIALLY
DEFERRED;

--
-- Name: stafdb_data stafdb_data_subset_id_c24da2b1_fk_stafdb_data_id; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_data
 ADD CONSTRAINT stafdb_data_subset_id_c24da2b1_fk_stafdb_data_id FOREIGN KEY
(subset_id) REFERENCES public.stafdb_data(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_data stafdb_data_timeframe_id_8663d339_fk_stafdb_timeperiod_id;
Type: FK CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_data
 ADD CONSTRAINT stafdb_data_timeframe_id_8663d339_fk_stafdb_timeperiod_id
FOREIGN KEY (timeframe_id) REFERENCES public.stafdb_timeperiod(id) DEFERRABLE
INITIALLY DEFERRED;

--
-- Name: stafdb_data stafdb_data_unit_id_f4f15ba8_fk_stafdb_unit_id; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_data
 ADD CONSTRAINT stafdb_data_unit_id_f4f15ba8_fk_stafdb_unit_id FOREIGN KEY
(unit_id) REFERENCES public.stafdb_unit(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_dataset stafdb_dataset_access_id_5c5fc94f_fk_stafdb_dqirating_id;
Type: FK CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_dataset

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 56 -

 ADD CONSTRAINT stafdb_dataset_access_id_5c5fc94f_fk_stafdb_dqirating_id FOREIGN
KEY (access_id) REFERENCES public.stafdb_dqirating(id) DEFERRABLE INITIALLY
DEFERRED;

--
-- Name: stafdb_dataset
stafdb_dataset_completeness_id_911eee85_fk_stafdb_dqirating_id; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_dataset
 ADD CONSTRAINT stafdb_dataset_completeness_id_911eee85_fk_stafdb_dqirating_id
FOREIGN KEY (completeness_id) REFERENCES public.stafdb_dqirating(id) DEFERRABLE
INITIALLY DEFERRED;

--
-- Name: stafdb_dataset stafdb_dataset_geographical_correla_2c6ca2b7_fk_stafdb_dq;
Type: FK CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_dataset
 ADD CONSTRAINT stafdb_dataset_geographical_correla_2c6ca2b7_fk_stafdb_dq
FOREIGN KEY (geographical_correlation_id) REFERENCES public.stafdb_dqirating(id)
DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_dataset_references
stafdb_dataset_refer_dataset_id_a5be5731_fk_stafdb_da; Type: FK CONSTRAINT; Schema:
public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_dataset_references
 ADD CONSTRAINT stafdb_dataset_refer_dataset_id_a5be5731_fk_stafdb_da FOREIGN
KEY (dataset_id) REFERENCES public.stafdb_dataset(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_dataset_references
stafdb_dataset_refer_reference_id_74570b6a_fk_stafdb_re; Type: FK CONSTRAINT;
Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_dataset_references
 ADD CONSTRAINT stafdb_dataset_refer_reference_id_74570b6a_fk_stafdb_re FOREIGN
KEY (reference_id) REFERENCES public.stafdb_reference(id) DEFERRABLE INITIALLY
DEFERRED;

--
-- Name: stafdb_dataset
stafdb_dataset_reliability_id_a3430559_fk_stafdb_dqirating_id; Type: FK CONSTRAINT;
Schema: public; Owner: postgres
--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 57 -

ALTER TABLE ONLY public.stafdb_dataset
 ADD CONSTRAINT stafdb_dataset_reliability_id_a3430559_fk_stafdb_dqirating_id
FOREIGN KEY (reliability_id) REFERENCES public.stafdb_dqirating(id) DEFERRABLE
INITIALLY DEFERRED;

--
-- Name: stafdb_dqirating stafdb_dqirating_indicator_id_772236ae_fk_stafdb_dqi_id;
Type: FK CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_dqirating
 ADD CONSTRAINT stafdb_dqirating_indicator_id_772236ae_fk_stafdb_dqi_id FOREIGN
KEY (indicator_id) REFERENCES public.stafdb_dqi(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_flowblocks
stafdb_flowblocks_destination_id_7d04261c_fk_stafdb_process_id; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_flowblocks
 ADD CONSTRAINT stafdb_flowblocks_destination_id_7d04261c_fk_stafdb_process_id
FOREIGN KEY (destination_id) REFERENCES public.stafdb_process(id) DEFERRABLE
INITIALLY DEFERRED;

--
-- Name: stafdb_flowblocks
stafdb_flowblocks_diagram_id_206862fd_fk_stafdb_flowdiagram_id; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_flowblocks
 ADD CONSTRAINT stafdb_flowblocks_diagram_id_206862fd_fk_stafdb_flowdiagram_id
FOREIGN KEY (diagram_id) REFERENCES public.stafdb_flowdiagram(id) DEFERRABLE
INITIALLY DEFERRED;

--
-- Name: stafdb_flowblocks
stafdb_flowblocks_origin_id_4b13114d_fk_stafdb_process_id; Type: FK CONSTRAINT;
Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_flowblocks
 ADD CONSTRAINT stafdb_flowblocks_origin_id_4b13114d_fk_stafdb_process_id
FOREIGN KEY (origin_id) REFERENCES public.stafdb_process(id) DEFERRABLE INITIALLY
DEFERRED;

--
-- Name: stafdb_geocode stafdb_geocode_parent_id_c40eb671_fk_stafdb_geocode_id;
Type: FK CONSTRAINT; Schema: public; Owner: postgres

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 58 -

--

ALTER TABLE ONLY public.stafdb_geocode
 ADD CONSTRAINT stafdb_geocode_parent_id_c40eb671_fk_stafdb_geocode_id FOREIGN
KEY (parent_id) REFERENCES public.stafdb_geocode(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_geocode
stafdb_geocode_system_id_1943b420_fk_stafdb_geocodesystem_id; Type: FK CONSTRAINT;
Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_geocode
 ADD CONSTRAINT stafdb_geocode_system_id_1943b420_fk_stafdb_geocodesystem_id
FOREIGN KEY (system_id) REFERENCES public.stafdb_geocodesystem(id) DEFERRABLE
INITIALLY DEFERRED;

--
-- Name: stafdb_material stafdb_material_catalog_id_32bd10bf_fk_stafdb_ma; Type: FK
CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_material
 ADD CONSTRAINT stafdb_material_catalog_id_32bd10bf_fk_stafdb_ma FOREIGN KEY
(catalog_id) REFERENCES public.stafdb_materialcatalog(id) DEFERRABLE INITIALLY
DEFERRED;

--
-- Name: stafdb_material stafdb_material_parent_id_dd728ec4_fk_stafdb_material_id;
Type: FK CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_material
 ADD CONSTRAINT stafdb_material_parent_id_dd728ec4_fk_stafdb_material_id FOREIGN
KEY (parent_id) REFERENCES public.stafdb_material(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_process stafdb_process_parent_id_bc4c539b_fk_stafdb_process_id;
Type: FK CONSTRAINT; Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_process
 ADD CONSTRAINT stafdb_process_parent_id_bc4c539b_fk_stafdb_process_id FOREIGN
KEY (parent_id) REFERENCES public.stafdb_process(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_referencespace_geocode
stafdb_referencespac_geocode_id_f11d0396_fk_stafdb_ge; Type: FK CONSTRAINT; Schema:
public; Owner: postgres
--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 59 -

ALTER TABLE ONLY public.stafdb_referencespace_geocode
 ADD CONSTRAINT stafdb_referencespac_geocode_id_f11d0396_fk_stafdb_ge FOREIGN
KEY (geocode_id) REFERENCES public.stafdb_geocode(id) DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_referencespace
stafdb_referencespac_location_id_e55f2a80_fk_stafdb_re; Type: FK CONSTRAINT;
Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_referencespace
 ADD CONSTRAINT stafdb_referencespac_location_id_e55f2a80_fk_stafdb_re FOREIGN
KEY (location_id) REFERENCES public.stafdb_referencespacelocation(id) DEFERRABLE
INITIALLY DEFERRED;

--
-- Name: stafdb_referencespace
stafdb_referencespac_parent_id_14e1ebb6_fk_stafdb_re; Type: FK CONSTRAINT; Schema:
public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_referencespace
 ADD CONSTRAINT stafdb_referencespac_parent_id_14e1ebb6_fk_stafdb_re FOREIGN KEY
(parent_id) REFERENCES public.stafdb_referencespace(id) DEFERRABLE INITIALLY
DEFERRED;

--
-- Name: stafdb_referencespace_geocode
stafdb_referencespac_referencespace_id_3bb6d502_fk_stafdb_re; Type: FK CONSTRAINT;
Schema: public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_referencespace_geocode
 ADD CONSTRAINT stafdb_referencespac_referencespace_id_3bb6d502_fk_stafdb_re
FOREIGN KEY (referencespace_id) REFERENCES public.stafdb_referencespace(id)
DEFERRABLE INITIALLY DEFERRED;

--
-- Name: stafdb_referencespacelocation
stafdb_referencespac_space_id_02983803_fk_stafdb_re; Type: FK CONSTRAINT; Schema:
public; Owner: postgres
--

ALTER TABLE ONLY public.stafdb_referencespacelocation
 ADD CONSTRAINT stafdb_referencespac_space_id_02983803_fk_stafdb_re FOREIGN KEY
(space_id) REFERENCES public.stafdb_referencespace(id) DEFERRABLE INITIALLY
DEFERRED;

--
-- PostgreSQL database dump complete
--

D4.2 - Development of an Urban Material Flow and Stock Database Structure - 60 -

Annex 2
Example spreadsheet for data collection

Timeframe name Frome (date) To (date) Material
name

Material code Quantity Unit Origin (reference
space)

Destination
(reference space)

Origin
(process)

Destination
(process)

Comments

Q1 2020 2010-01-01 2010-03-31 Cement EW202 4034 t Germany Apeldoorn Mining Manufacturing

2019 2019-01-01 2019-12-31 Glass EW399 110 t Apeldoorn Distribution Construction

	Contents
	Acronyms and Abbreviations
	Table of Figures
	Table of Tables
	1. Introduction
	2. Database Structure
	2.1. Background
	2.2. Requirements for data storage in CityLoops
	2.3. Principal CityLoops changes to STAFDB
	2.3.1. Database normalisation and structural clean-up
	2.3.2. Improved implementation of Adjacency Lists
	2.3.3. Process diagrams
	2.3.4. Independent structure

	2.4. Structural overview

	3. Going forward
	Bibliography
	Annex 1
	Annex 2

